
期刊简介
发展历程:《护理学报》原名《南方护理学报》,由广东省教育厅主管、南方医科大学主办,是目前国内唯一的一份护理学报。1995年7月正式创刊,当时名为《南方护理杂志》,小16开本,双月刊,48页,军内赠阅每年3000册;1999年2月以《南方护理学报》面世,自办发行加赠阅,年发行1.2万册;2000年改版为大16开本,双月刊,页码增至64页,邮发和自办发行相结合,年发行1.5万册;2002年页码增至80页,年发行2.1万册;2004年改双月刊为月刊,页码64页,年发行14万册;2005年页码增至96页,年发行18万册。栏目介绍:本刊辟有专家论坛、论著、研究生园地、调查研究、综述、临床护理、中医护理、护理管理、护理教育、心理卫生、健康教育、循证护理、个案研究、药械护理、社区护理、国外护理、基层来稿、护理创新、学术争鸣、短篇报道、读者 作者 编者等栏目,并开辟以彩图和文字说明为主的医院介绍专栏,同时兼营广告业务,欢迎来电来函联系。国内数据库收录及获奖介绍:2001年被国家级火炬计划项目——《中国学术期刊综合评价数据库》、《中国期刊网》、《中国学术期刊(光盘版)》全文收录;2002年被《中国核心期刊(遴选)数据库》收录;2003年被中国学术期刊(光盘版)编辑委员会评为《CAJ-CD规范》执行优秀期刊,同年被国家科技部收录为“中国科技论文统计源期刊”(中国科技核心期刊);2004年被评为“全军优秀医学期刊”。征订信息:本刊为国际期刊标准大16开本,国内统一刊号:CN 44—1631/R,国际连续出版刊号:ISSN 1008-9969。每月20日出版,定价7元/册,全年84元。国内外公开发行。国内邮发代号:46—200,国外发行代号:4831 BM。编辑部全年接受邮购,邮购地址:广州市广州大道北1838号护理学报编辑部。
脂肪酸代谢
时间:2024-12-10 16:15:51
一、脂肪酸的氧化分解
脂肪酸在有充足氧供给的情况下,可氧化分解为CO2和H2O,释放大量能量,因此脂肪酸是机体主要能量来源之一。肝和肌肉是进行脂肪酸氧化最活跃的组织,其最主要的氧化形式是β-氧化。
(一)脂肪酸的β-氧化过程
此过程可分为活化,转移,β-氧化共三个阶段。
1.脂肪酸的活化
和葡萄糖一样,脂肪酸参加代谢前也先要活化。其活化形式是硫酯:脂肪酰CoA,催化脂肪酸活化的酶是脂酰CoA合成酶(acyl CoA synthetase)。
活化后生成的脂酰CoA极性增强,易溶于水;分子中有高能键、性质活泼;是酶的特异底物,与酶的亲和力大,因此更容易参加反应。
脂酰CoA合成酶又称硫激酶,分布在胞浆中、线粒体膜和内质网膜上。胞浆中的硫激酶催化
中短链脂肪酸活化;内质网膜上的酶活化长链脂肪酸,生成脂酰CoA,然后进入内质网用于甘油三酯合成;而线粒体膜上的酶活化的长链脂酰CoA,进入线粒体进入β-氧化。
2.脂酰CoA进入线粒体:催化脂肪酸β-氧化的酶系在线粒体基质中,但长链脂酰CoA不能自由通过线粒体内膜,要进入线粒体基质就需要载体转运,这一载体就是肉毒碱(carnitine),即3-羟-4-三甲氨基丁酸。
长链脂肪酰CoA和肉毒碱反应,生成辅酶A和脂酰肉毒碱,脂肪酰基与肉毒碱的3羟基通过酯键相连接。
催化此反应的酶为肉毒碱脂酰转移酶(carnitine acyl transferase)。线粒体内膜的内外两侧均有此酶,系同工酶,分别称为肉毒碱脂酰转移酶I和肉毒碱脂酰转移酶Ⅱ。酶Ⅰ使胞浆的脂酰CoA转化为辅 酶A和脂肪酰肉毒碱,后者进入线粒体内膜。位于线粒体内膜内侧的酶Ⅱ又使脂肪酰肉毒碱转化成肉毒碱和脂酰CoA,肉毒碱重新发挥其载体功能,脂酰CoA则进入线粒体基质,成为脂肪酸β-氧化酶系的底物。
长链脂酰CoA进入线粒体的速度受到肉毒碱脂酰转移酶Ⅰ和酶Ⅱ的调节,酶Ⅰ受丙二酰CoA抑制,酶Ⅱ受胰岛素 抑制。丙二酰CoA是合成脂肪酸的原料,胰岛素通过诱导乙酰CoA羧化酶的合成使丙二酰CoA浓度增加,进而抑制酶Ⅰ。可以看出胰岛素对肉毒碱脂酰转移酶 Ⅰ和酶Ⅱ有间接或直接抑制作用。饥饿或禁食时胰岛素分泌减少,肉毒碱脂酰转移酶Ⅰ和酶Ⅱ活性增高,转移的长链脂肪酸进入线粒体氧化供能。
3.β-氧化的反应过程:脂酰CoA在线粒体基质中进入β氧化要经过四步反应,即脱氢、加水、再脱氢和硫解,生成一分子乙酰CoA和一个少两个碳的新的脂酰CoA。
第一步脱氢(dehydrogenation)反应由脂酰CoA脱氢酶活化,辅基为FAD,脂酰CoA在α和β碳原子上各脱去一个氢原子生成具有反式双键的α、β-烯脂肪酰辅酶A。
第二步加水(hydration)反应由烯酰CoA水合酶催化,生成具有L-构型的β-羟脂酰CoA。
第三步脱氢反应是在β-羟脂肪酰CoA脱饴酶(辅酶为NAD+)催化下,β-羟脂肪酰CoA脱氢生成β酮脂酰CoA。
第四步硫解(thiolysis)反应由β-酮硫解酶催化,β-酮酯酰CoA在α和β碳原子之间断链,加上一分子辅酶A生成乙酰CoA和一个少两个碳原子的脂酰CoA。
上述四步反应与TCA循环中由琥珀酸经延胡索酸、苹果酸生成草酰乙酸的过程相似,只是β-氧化的第四步反应是硫解,而草酰乙酸的下一步反应是与乙酰CoA缩合生成柠檬酸。
长链脂酰CoA经上面一次循环,碳链减少两个碳原子,生成一分子乙酰CoA,多次重复上面的循环,就会逐步生成乙酰CoA。
从上述可以看出脂肪酸的β-氧化过程具有以下特点。首先要将脂肪酸活化生成脂酰CoA,这是一个耗能过程。 中、短链脂肪酸不需载体可直拉进入线粒体,而长链脂酰CoA需要肉毒碱转运。β-氧化反应在线粒体内进行,因此没有线粒体的红细胞不能氧化脂肪酸供能。 β-氧化过程中有FADH2和NADH+H+生成,这些氢要经呼吸链传递给氧生成水,需要氧参加,乙酰CoA的氧化也需要氧。因此,β-氧化是绝对需氧的 过程。
(二)脂肪酸β-氧化的生理意义
脂肪酸β-氧化是体内脂肪酸分解的主要途径,脂肪酸氧化可以供应机体所需要的大量能量,以十八个碳原子的饱和脂肪酸硬脂酸为例,其β-氧化的总反应为:
CH3(CH2)15COSCoA+8NAD++*CoASH+8H2O——→9CH3COSCoA+8FADH2+8NADH+8H+
8分子FADH2提供8×2=16分子ATP,8分子NADH+H+提供8×3=24分子ATP,9分子乙酰 CoA完全氧化提供9×12=108个分子ATP,因此一克分子硬脂酸完全氧化生成CO2和H2O,共提供148克分子ATP。硬脂酸的活化过程消耗2克 分子ATP,所以一克分子硬脂酸完全氧化可净生成146克分子ATP。一克分子葡萄糖完全氧化可生成38分子ATP。三克分子葡萄糖所含碳原子数与一克分 子硬脂酸相同,前者可提供114克分子ATP,后者可提供146克分子ATP。可见在碳原子数相同的情况下脂肪酸能提供更多的能量。脂肪酸氧化时释放出来 的能量约有40%为机体利用合成高能化合物,其余60%以热的形式释出,热效率为40%,说明人体能很有效地利用脂肪酸氧化所提供的能量。
脂肪酸β-氧化也是脂肪酸的改造过程,人体所需要的脂肪酸链的长短不同,通过β-氧化可将长链脂肪酸改造成长度适宜的脂肪酸,供机体代谢所需。
脂肪酸β-氧化过程中生成的乙酰CoA是一种十分重要的中间化合物,乙酰CoA除能进入三羧酸循环氧化供能外,还是许多重要化合物合成的原料,如酮体、胆固醇和类固醇化合物。
(三)脂肪酸的特殊氧化形式
1.丙酸的氧化:人体内和膳食中含极少量的奇数碳原子脂肪酸,经过β-氧化除生成乙酰CoA外还生成一分子丙 酰CoA,某些氨基酸如异亮氨酸、蛋氨酸和苏氨酸的分解代谢过程中有丙酰CoA生成,胆汁酸生成过程中亦产生丙酰CoA。丙酰CoA经过羧化反应和分子内 重排,可转变生成琥珀酰CoA,可进一步氧化分解,也可经草酰乙酸异生成糖,反应过程见下图。
甲基丙二酰CoA变位酶的辅酶是5′-脱氧腺苷B12(5′dAB12),维生素B12缺乏或5′ -dAB12生成障碍均影响变位酶活性,使甲基丙二酰CoA堆积。结果,一方面甲基丙二酰CoA脱去辅酶A,生成甲基丙二酸引起血中甲基丙二酸含量增高 (甲基丙二酸血症),并从尿中排出体外(24小时排出量大于4mg时称为甲基丙二酸尿症)。另一方面又引起丙酰CoA浓度增高,可参与神经髓鞘脂类合成, 生成异常脂肪酸(十五碳、十七碳和十九碳脂肪酸),引起神经髓鞘脱落、神经变性(临床上称为亚急性合并变性症)。
2.ω-氧化:脂肪酸的ω-氧化是在肝微粒体中进行,由加单氧酶催化的。首先是脂肪酸的ω碳原子羟化生成ω-羧脂肪酸,再经ω醛脂肪酸生成α、ω-二羧酸,然后在α-端或ω-端活化,进入线粒体进入β-氧化,最后生成琥珀酰CoA。
3.α-氧化:脂肪酸在微粒体中由加单氧酶和脱羧酶催化生成α-羟脂肪酸或少一个碳原子的脂肪酸的过程称为脂 肪酸的α-氧化。长链脂肪酸由加单氧酶催化、由抗坏血酸或四氢叶酸作供氢体在O2和Fe2+参与下生成α-羟脂肪酸,这是脑苷脂和硫脂的重要成分,α-羟 脂肪酸继续氧化脱羧就生成奇数碳原子脂肪酸。α-氧化障碍者不能氧化植烷酸(phytanic acid,3、7、11、15-四甲基十六烷酸)。牛奶和动物脂肪中均有此成分,在人体内大量堆积便引起Refsum氏病。α-氧化主要在脑组织内发生, 因而α-氧化障碍多引起神经症状。
4.不饱和脂肪酸(unsaturated fatty acid)的氧化:人体内约有1/2以上的脂肪酸是不饱和脂肪酸,食物中也含有不饱和脂肪酸。这些不饱和脂肪酸的双键都是顺式的,它们活化后进入β-氧化 时,生成3顺烯脂酰CoA,此时需要顺3反2异构酶催化使其生成2反烯脂酰CoA以便进一步反应。2反烯脂酰CoA加水后生成Dβ-羟脂酰 CoA,需要β-羟脂酰CoA差向异构酶催化,使其由D构型转变成L构型,以便再进行脱氧反应(只有Lβ-羟脂酰CoA才能作为β-羟脂酰CoA脱 氢酶的底物)。
不饱和脂肪酸完全氧化生成CO2和H2O时提供的ATP少于相同碳原子数的饱和脂肪酸。